Validasi Psikometrik Instrumen Faktor Penentu Kualitas BerasPremium Berbasis Teori Respons Butir (Psychometric Validation of an Instrument for Determinant Factorsof Premium Rice Quality Based on Item Response Theory)
Main Article Content
Abstract
Pemahaman terhadap preferensi konsumen memerlukan alat ukur yang akurat, andal, serta mampu merepresentasikan persepsi terhadap kualitas produk secara menyeluruh. Pada komoditas strategis seperti beras premium, atribut sensorik dan fisik, meliputi aroma, warna, tekstur, kebersihan, dan masa simpan, memiliki peranan penting dalam membentuk persepsi konsumen. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi instrumen pengukuran persepsi konsumen terhadap kualitas beras premium dengan pendekatan Teori Respons Butir (Item Response Theory/IRT), khususnya melalui Model Respons Terklasifikasi (Graded Response Model/GRM). Fokus penelitian diarahkan pada penyusunan instrumen yang valid dan reliabel untuk
mengukur atribut-atribut utama yang relevan dalam konteks preferensi konsumen. Pengujian dilakukan terhadap sejumlah asumsi dasar GRM, yaitu unidimensionalitas, independensi lokal, dan monotonisitas, yang hasilnya menunjukkan bahwa ketiga asumsi terpenuhi. Sebagian besar butir dalam instrumen memiliki parameter diskriminasi yang tinggi (a > 1,0) serta ambang kesulitan (threshold) yang logis dan tersebar dengan baik di sepanjang spektrum tingkat kemampuan. Evaluasi kurva karakteristik butir (Item Characteristic Curve/ICC) dan indeks penerimaan menunjukkan bahwa skala ini mampu mengukur preferensi konsumen dari tingkat kesulitan
sangat rendah hingga sangat tinggi secara efektif. Hasil uji efektivitas jumlah kategori respons memperlihatkan bahwa empat pilihan jawaban memberikan prediksi terbaik, dengan nilai Root Mean Square Error (RMSE) pada kisaran 0,1867–0,2138, lebih rendah dibandingkan dengan versi tiga maupun lima kategori. Dengan demikian, GRM terbukti efektif dalam membangun skala pengukuran preferensi konsumen terhadap beras premium, sehingga dapat dimanfaatkan untuk penyusunan strategi dan kebijakan berbasis data.
Understanding consumer preferences requires measurement tools that are accurate, reliable, and capable of representing perceptions of product quality comprehensively. For strategic commodities such as premium rice, sensory and physical attributes, such as aroma, color, texture, cleanliness, and shelf life, play a crucial role in shaping consumer perceptions. This study aimed to develop and evaluate a measurement instrument for consumer perceptions of premium rice quality using the Item Response Theory (IRT) framework, specifically the Graded Response Model (GRM). The focus of this research was on constructing a valid and reliable tool to assess key attributes that were relevant in the context of consumer preferences. The analysis tested several fundamental assumptions of the GRM, namely unidimensionality, local independence, and monotonicity, all of which were satisfied. Most items in the instrument demonstrated high discrimination parameters (a > 1.0) as well as logical and well-distributed threshold values across the ability spectrum. Evaluation of the Item Characteristic Curves (ICC) and acceptance indices indicated that the scale effectively measures consumer preferences across a wide range of difficulty levels, from very low to very high. Furthermore, the test of response category effectiveness showed that a four-option format provided the best prediction, with Root Mean Square Error (RMSE) ranging between 0.1867 and 0.2138, which was lower than the three- and five-option versions. Thus, the GRM is proven to be effective in constructing a measurement scale for consumer preferences toward premium rice, offering valuable insights for data-driven strategies and policies.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
catatan copyright agar disepakati oleh penulis.
Penulis sepakat dengan ketentuan-ketentuan dalam etika publikasi
Penulis menyatakan bahwa karya tulis yang diserahkan untuk diterbitkan adalah asli, belum pernah dipublikasikan di manapun dalam bahasa apapun, dan tidak sedang dalam proses pengajuan ke penerbit lain
References
Baker, F. B. . (2001). The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation.
Baker, F. B., & Kim. (n.d.). Item Response Theory: Parameter Estimation Techniques.
Brentari, E., & Golia, S. (2007). Unidimensionalityin The Rasch Model: How to Detect and Interpret. Statistica, LXVII(3), 253–261.
Chamhuri, N., & Batt, P. J. (2013). Exploring the Factors Influencing Consumers’ Choice of Retail Store When Purchasing Fresh Meat in Malaysia. International Food and Agribusiness Management Review, 16.
Chen, W.-H., & Thissen, D. (1997). Local Dependence Indexes for Item Pairs Using Item Response Theory. In Journal of Educational and Behavioral Statistics Fall (Vol. 22, Issue 3). http://jebs.aera.net
Chong, J., Mokshein, S. E., & Mustapha, R. (2022). Applying the Rasch Rating Scale Model (RSM) to Investigate The Rating Scales Function in Survey Research Instrument. Cakrawala Pendidikan, 41(1), 97–111. https://doi.org/10.21831/cp.v41i1.39130
De Ayala, R. J., & Hertzog, M. A. (1991). The Assessment of Dimensionality for Use in Item Response Theory. Multivariate Behavioral Research, 26(4), 765–792. https://doi.org/10.1207/s15327906mbr2604_9
Embretson, S. E., & Reise, S. P. (2000). Item Response Theory for Psychologists. Lawrence Erlbaum Associates.
Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis (7th ed.). Prentice Hall.
Hambelton, R. K., van der Linden, W. J., & Wells, C. S. (2011). IRT Models for The Analysis of Polytomously Scored Data: Brief and Selected History of Model Building Advances. In M. L. Nering & R. Ostini (Eds.), Handbook of Polytomous Item Response Theory Models (pp. 21–42). Routledge.
Hambleton, R. K., & Swaminathan, H. (1985). Item Response Theory: Principles and Applications. Springer Science+Business Media LLC.
Himelfarb, I. (2019). A Primer on Standardized Testing: History, Measurement, Classical Test Theory, Item Response Theory, and Equating. Journal of Chiropractic Education, 33(2), 151–163. https://doi.org/10.7899/JCE-18-22
Junker, B. W. (1996). Monotonicity and Conditional Independence in Models for Student Assessment and Attitude Measurement. Johnson.
Lord, F. M. . (2008). Applications of Item Response Theory to Practical Testing problems. Routledge.
Matteucci, M., & Stracqualursi, L. (2006). Student Assesment Via Graded Response Model. Statistica, LXVI(4).
Mokken, R. J. (1997). Nonparametric Models for Dichotomous Responses. In W. J. Van der Linden & R. K. Hambelton (Eds.), Handbook of Modern Item Response Theory. Springer New York. https://doi.org/10.1007/978-1-4757-2691-6
Natasya, D. V., Setiawan, B., & Eka Hardana, A. (2024). Prefensi Konsumen terhadap Atribut Beras Premium. VIGOR: Jurnal Ilmu Pertanian Tropika Dan Subtropika, 9(1), 33–43.
Reise, S. P., Morizot, J., & Hays, R. D. (2007). The Role of The Bifactor Model in Resolving Dimensionality Issues in Health Outcomes Measures. In Quality of Life Research (Vol. 16, Issue SUPPL. 1). https://doi.org/10.1007/s11136-007-9183-7
Rubio, V. J., Aguado, D., Hontangas, P. M., & Hernández, J. M. (2007). Psychometric Properties of An emotional adjustment measure: An application of the graded response model. European Journal of Psychological Assessment, 23(1), 39–46. https://doi.org/10.1027/1015-5759.23.1.39
Samejima, F. (1969). Estimation of Latent Ability Using A Response Pattern of Graded Scores. The William Byrd Press.
Sijtsma, K., & Molenaar, I. M. (2002). Introduction to Nonparametric Item Response Theory. In Quality of Life Research (Issue 4). Sage Publication.
Van Der Ark, L. A. (2012). New Developments in Mokken Scale Analysis in R. Journal of Statistical Software, 48(5), 1–27. http://www.jstatsoft.org/
Widyaningsih, S. W., Yusuf, I., Prasetyo, Z. K., & Istiyono, E. (2021). The Development of The Hots Test of Physics Based on Modern Test Theory: Question Modeling Through E-learning of Moodle LMS. International Journal of Instruction, 14(4), 51–68. https://doi.org/10.29333/iji.2021.1444a
Yen, W. M. (1993). Scaling Performance Assessments: Strategies for Managing Local Item Dependence. Journal of Educational Measurement Fall, 30(3), 187–213.
Yuan, T., Honglei, Z., Xiao, X., Ge, W., & Xianting, C. (2021). Measuring Perceived Risk in Sharing Economy: A Classical Test Theory and Item Response Theory approach. International Journal of Hospitality Management, 96. https://doi.org/10.1016/j.ijhm.2021.102980
Zhou, H., Xia, D., & He, Y. (2020). Rice Grain Quality—Traditional Traits for High Quality Rice and Health-Plus Substances. Molecular Breeding, 40(1). https://doi.org/10.1007/s11032-019-1080-6