Pengaruh Waktu Perendaman Beras terhadap Profil Gelatinisasi dan Komponen Bioaktif Tepung Beras Pecah Kulit Berkecambah

Main Article Content

Hadi Munarko
Slamet Budijanto
Azis Boing Sitanggang
Feri Kusnandar

Abstract

Tepung beras pecah kulit berkecambah dapat dimanfaatkan sebagai bahan pangan fungsional karena
mengandung senyawa γ-aminobutyric acid (GABA) dan komponen bioaktif lainnya. Penelitian ini bertujuan
untuk menganalisis pengaruh waktu perendaman terhadap profil pasting dan komponen bioaktif tepung beras
pecah kulit berkecambah. Perkecambahan dilakukan dengan merendam beras pecah kulit selama 120 jam
dengan pengambilan sampel setiap 24 jam. Tepung beras pecah kulit berkecambah mengalami penurunan
viskositas puncak, breakdown, dan setback seiring dengan lama waktu perendaman. Kandungan GABA
mengalami peningkatan dan mencapai nilai tertinggi setelah perendaman 72 jam. Kandungan total fenol,
kapasitas antioksidan, dan γ-orizanol mengalami penurunan seiring dengan lamanya waktu perendaman.
Sementara itu, hasil analisis komposisi asam lemak tepung beras pecah kulit berkecambah pada perlakuan
perendaman 120 jam menunjukkan adanya dominasi asam lemak tidak jenuh. Berdasarkan hasil penelitian
ini, tepung beras kecambah dengan perendaman 72 jam dapat dipilih sebagai perlakuan terbaik karena
memiliki akumulasi GABA paling tinggi.

Article Details

Section
Articles

References

AACC [American Association for Clinical Chemistry]. 1999. AACC Approved Methods of Analysis, 11th Edition -AACC Method 61-02.01. Determination of the Pasting Properties of Rice with the Rapid Visco Analyser. Cereals & Grains Association, St. Paul, MN, U.S.A.

Banchuen, J. 2010. Bio-Active Compounds in Germinated Brown Rice and Its Application. PhD Thesis at Prince of Songkla University, 125 h.

Bligh, E.G., dan W.J. Dyer. 1959. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology 37 (8): 911–17.

Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology 28 (1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Cáceres, P.J., C. Martínez-Villaluenga, L. Amigo, dan J. Frias. 2014. Maximising the Phytochemical Content and Antioxidant Activity of Ecuadorian Brown Rice Sprouts through Optimal Germination Conditions. Food Chemistry 152: 407–14. https://doi.org/10.1016/j.foodchem.2013.11.156.

Cáceres, P.J., E. Peñas, C. Martinez-Villaluenga, L. Amigo, dan J. Frias. 2017. Enhancement of Biologically Active Compounds in Germinated Brown Rice and the Effect of Sun-Drying. Journal of Cereal Science 73: 1–9. https://doi.org/10.1016/j.jcs.2016.11.001.

Charoenthaikij, P., K. Jangchud, A. Jangchud, K. Piyachomkwan, P. Tungtrakul, dan W. Prinyawiwatkul. 2009. Germination Conditions Affect Physicochemical Properties of Germinated Brown Rice Flour. Journal of Food Science 74 (9): 255. https://doi.org/10.1111/j.1750-3841.2009.01345.x.

Cho, D.H. dan S.T. Lim. 2018. Changes in Phenolic Acid Composition and Associated Enzyme Activity in Shoot and Kernel Fractions of Brown Rice during Germination. Food Chemistry 256 (February): 163–70. https://doi.org/10.1016/j.foodchem.2018.02.040.

Cornejo, F., P.J. Caceres, C. Martínez-Villaluenga, C.M. Rosell, dan J. Frias. 2015. Effects of Germination on the Nutritive Value and Bioactive Compounds of Brown Rice Breads. Food Chemistry 173: 298–304. https://doi.org/10.1016/j.foodchem.2014.10.037.

Diana, M., J. Quílez, dan M. Rafecas. 2014. Gamma-Aminobutyric Acid as a Bioactive Compound in Foods : A Review. Journal of Functional Foods 10: 407–20. https://doi.org/10.1016/j.jff.2014.07.004.

Ekowati, N.Y. dan Y.A. Purwestri. 2016. Analisis Kandungan Gamma Aminobutyric Acid (GABA), Fenol Total Dan Aktivitas Antioksidan ‘Beras Kecambah’ Kultivar Lokal (Oryza Sativa L.) Di Yogyakarta. Agricola 6 (2): 117–27. https://doi.org/10.1017/CBO9781107415324.004.

Hayakawa, K., M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa, dan Y. Yamori. 2004. Effect of a Gamma-Aminobutyric Acid Enriched Dairy Product on Blood Pressure of Spontaneously Hypertensive and Normotensive Wistar–Kyoto Rats. British Journal of Nutrition 92: 411–17.

Indriarsih, S., M. Astuti, S. Kanoni, dan E.S. Rahayu. 2017. Fatty Acid Composition and Physicochemical Properties in Germinated Black Rice. Indonesian Food and Nutrition Progress 14 (1): 29–36. http://journal.ugm.ac.id/jifnp.

Jayadeep, A. dan N. G. Malleshi. 2011. Nutrients, Composition of Tocotrienols, Tocopherols, and γ-Oryzanol, and Antioxidant Activity in Brown Rice before and after Biotransformation. CYTA - Journal of Food 9 (1): 82–87. https://doi.org/10.1080/19476331003686866.

Kaosa-ard, T. dan S. Songsermpong. 2012. Influence of Germination Time on the GABA Content and Physical Properties of Germinated Brown Rice. Asian Journal of Food and Agro-Industry 5 (4): 270–83.

Kiing, S.C., P.H. Yiu, A. Rajan, dan S.C. Wong. 2009. Effect of Germination on γ-Oryzanol Content of Selected Sarawak Rice Cultivars. American Journal of Applied Sciences 6 (9): 1658–1661. https://doi.org/10.3844/ajassp.2009.1658.1661.

Komatsuzaki, N., K. Tsukahara, H. Toyoshima, T. Suzuki, N. Shimizu, dan T. Kimura. 2007. Effect of Soaking and Gaseous Treatment on GABA Content in Germinated Brown Rice. Journal of Food Engineering 78 (2): 556–60. https://doi.org/10.1016/j.jfoodeng.2005.10.036.

Lee, Y.R, J.Y. Kim, K.S. Woo, I.G. Hwang, K.H. Kim, K.J. Kim, dan H.S. Jeong. 2007. Changes in the Chemical and Functional Components of Korean Rough Rice before and after Germination. Food Science and Biotechnology 16: 1006–10.

Lilitchan, S., C. Tangprawat, K. Aryusuk, S. Krisnangkura, S. Chokmoh, dan K. Krisnangkura. 2008. Partial Extraction Method for the Rapid Analysis of Total Lipids and γ-Oryzanol Contents in Rice Bran. Food Chemistry 106 (2): 752–59. https://doi.org/10.1016/j.foodchem.2007.06.052.

Maisont, S. dan W. Narkrugsa. 2010. The Effect of Germination on GABA Content, Chemical Composition, Total Phenolics Content and Antioxidant Capacity of Thai Waxy Paddy Rice. Kasetsart Journal - Natural Science 44 (5): 912–23.

Mohan, B.H, N.G. Malleshi, dan T. Koseki. 2010. Physico-Chemical Characteristics and Non-Starch Polysaccharide Contents of Indica and Japonica Brown Rice and Their Malts. LWT - Food Science and Technology 43: 784–91. https://doi.org/10.1016/j.lwt.2010.01.002.

Munarko, H., A.B. Sitanggang, F. Kusnandar, dan S. Budijanto. 2019. Kecambah Beras Pecah Kulit : Proses Produksi Dan Karakteristiknya. Pangan 28 (3): 239–52.

Munarko, H., A.B. Sitanggang, F. Kusnandar, dan S. Budijanto. 2020. Phytochemical, Fatty Acid and Proximal Composition of Six Selected Indonesian Brown Rice Varieties. CyTA - Journal of Food 18 (1): 336–43. https://doi.org/10.1080/19476337.2020.1754295.

Nakagawa, K., and A. Onota. 1996. Accumulation of G-Aminobutyric Acid (GABA) in the Rice Germ. Shokuhin Kaihatsu 31: 43–46.

Ohtsubo, K., K. Suzuki, Y. Yasui, dan T. Kasumi. 2005. Bio-Functional Components in the Processed Pre-Germinated Brown Rice by a Twin-Screw Extruder. Journal of Food Composition and Analysis 18 (4): 303–16. https://doi.org/10.1016/j.jfca.2004.10.003.

Okada, T., T. Sugishita, T. Murakami, H. Murai, T. Saikusa, dan T. Horio. 2000. Effect of the Defatted Rice Germ Enriched with GABA for Sleepless, Depression, Autonomic Disorder by Oral Administration. Nippon Shokuhin Kagaku Kougaku Kaishi 47 (8): 596–603.

Phattayakorn, K., P. Pajanyor, S. Wongtecha, A. Prommakool, dan W. Saveboworn. 2016. Effect of Germination on Total Phenolic Content and Antioxidant Properties of ‘Hang’ Rice. International Food Research Journal 23 (1): 406–9.

Ravichanthiran, K., Z. Ma, H. Zhang, Y. Cao, C. Wang, S. Muhammad, E. Aglago, Y. Zhang, Y. Jin, dan B. Pan. 2018. “Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications.” Antioxidants 7 (6): 71. https://doi.org/10.3390/antiox7060071.

Rogers, E.J., S.M. Rice, R.J. Nicolosi, D.R. Carpenter, C.A. McClelland, dan L.J. Romanczyk. 1993. Identification and quantitation of c-oryzanol components and simultaneous assess- ment of tocols in rice bran oil. Journal of the American Oil Chemists’ Society 70: 301–307.

Shelp, B.J., A.W. Bown, dan M.D. McLean. 1999. Metabolism and Functions of Gamma-Aminobutyric Acid. Trends in Plant Science 4 (11): 446–52. https://doi.org/10.1016/S1360-1385(99)01486-7.

Singleton, V.L dan J.A. Rossi. 1965. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture 16: 144–58. http://sci-hub.cc/http://www.ajevonline.org/content/16/3/144.short.

Watanabe, M., T. Maeda, K. Tsukahara, H. Kayahara, dan N. Morita. 2004. Application of pre germinated brown rice for breadmaking. Cereal Chemistry 81(4):450-455.

Wilson, T.A., R.J. Nicolosi, B. Woolfrey, dan D. Kritchevsky. 2007. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. The Journal of Nutritional Biochemistry 18: 105–112.

Wu, F., H. Chen, N. Yang, J. Wang, X. Duan, Z. Jin, dan X. Xu. 2013. Effect of Germination Time on Physicochemical Properties of Brown Rice Flour and Starch from Different Rice Cultivars. Journal of Cereal Science 58 (2): 263–71. https://doi.org/10.1016/j.jcs.2013.06.008.

Xie, L.H., N. Chen, B.W. Duan, Z.W. Zhu, dan X.Y. Lia. 2008. Impact of proteins on pasting and cooking properties ofwaxy and non-waxy rice. Journal of Cereal Science 47:372–379.

Xu, J., H. Zhang, X. Guo, dan H. Qian. 2012. The Impact of Germination on the Characteristics of Brown Rice Flour and Starch. Journal of the Science of Food and Agriculture 92 (2): 380–87. https://doi.org/10.1002/jsfa.4588.

Xu, Z., N. Hua, dan J.S. Godber. 2001. Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,20-azino(2-methylpropionamidine) dihydrochloride. Journal of Agricultural and Food Chemistry 49: 2077–2081

Yodpitak, S., S. Mahatheeranont, D. Boonyawan, P. Sookwong, S. Roytrakul, dan O. Norkaew. 2019. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chemistry 289 (2019): 328–39. https://doi.org/10.1016/j.foodchem.2019.03.061.

Zhang, Q., J. Xiang, L. Zhang, X. Zhu, J. Evers, W. van der Werf, dan L. Duan. 2014. Optimizing Soaking and Germination Conditions to Improve Gamma-Aminobutyric Acid Content in Japonica and Indica Germinated Brown Rice. Journal of Functional Foods 10: 283–91. https://doi.org/10.1016/j.jff.2014.06.009.

Zubair, M., F. Anwar, M. Ashraf, and M. K. Uddin. 2012. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza Sativa L.). International Journal of Molecular Sciences 13 (4): 4608–22. https://doi.org/10.3390/ijms13044608.