Modifikasi Iklim Mikro untuk Tanaman Soba (Fagopyrum esculentum) Sebagai Pangan Fungsional Micro Climate Modification on Plant Buckwheat (Fagopyrum esculentum) as Functional Food
Main Article Content
Abstract
Tanaman soba (Fagopyrum esculentum) berasal dari wilayah subtropis, berpotensi sebagai pangan fungsional karena mengandung senyawa flavonoid antioksidan yaitu rutin. Kadar rutin sangat dipengaruhi oleh lingkungan. Penelitian ini bertujuan untuk mengetahui potensi tanaman soba sebagai sumber bahan pangan fungsional. Penelitian dilaksanakan di Kebun Pembibitan, desa Kopo (600 meter dari permukaan laut) Kabupaten Bogor, Jawa Barat, dari bulan Mei sampai Juli 2012. Metode yang digunakan adalah rancangan petak tersarang dalam rancangan acak kelompok dua faktor dengan tiga ulangan. Faktor pertama adalah naungan terdiri dari dua taraf, yaitu: tanpa naungan, dengan naungan paranet 55 persen, dan faktor kedua adalah populasi terdiri dari dua taraf, yaitu: 200 tanaman/m2, 50 tanaman/m2. Hasil penelitian menunjukkan produksi biji terbanyak pada kombinasi perlakuan tanpa naungan populasi 200 tanaman/m2 (N0P1) sebesar 764,3 g/m2 atau 7,643 ton/hektar dan terendah pada perlakuan dengan naungan paranet 55 persen populasi 50 tanaman/m2 (N1P2) sebesar 146,0 g/m2 atau 1,46 ton/hektar. Kadar rutin tertinggi diperoleh pada perlakuan tanpa naungan sebesar 0,398 mg/g biji. Produktivitas kadar
rutin biji soba sebesar 304,19 mg/m2. atau 3,04 kg/hektar.
Buckwheat (Fagopyrum esculentum), originated from subtropical regions, has the potential as a functional food because it contains flavonoid, called rutin. Rutin concentration is greatly influenced by the environment. The objective of this study is to determine the potential of the buckwheat plant as a functional food. The research is conducted in the nursery garden of Kopo village (600 m asl), Bogor District, West Java, from May to July 2012. The method used is the nested plot design in a randomized complete block design with two factors and three replications. The first factor is two levels of shading namely without shading and with shading of 55 percent paranet. The second factor is two crop densities namely 200 plants/m2 and 50 plants/m2. The research results show that the highest grain production (764.3 g/m2 or 7.643 tons/ha) is in the combination treatment of NOP1 and the lowest one (146.0 g/m2 or 1.46 tons/ha) is in N1P2 treatment. The highest rutin concentration is obtained on the treatment without shade at 0.398 mg/g groats. The productivity of rutin concentration of buckwheat groats is 3.04 kg/ha.
Article Details
catatan copyright agar disepakati oleh penulis.
Penulis sepakat dengan ketentuan-ketentuan dalam etika publikasi
Penulis menyatakan bahwa karya tulis yang diserahkan untuk diterbitkan adalah asli, belum pernah dipublikasikan di manapun dalam bahasa apapun, dan tidak sedang dalam proses pengajuan ke penerbit lain
References
Ali M. A & Kagan J. 1974. The Biosynthesis of Flavonoid Pigments : On The Incorporation of Ploroglucinol and Phloroglucinyl Cinnamate into Rutin in Fagopyrum esculentum. Phytochemistry, 1974. Vol. 13 pp1479 to 1482
Chaturvedi GS, Ram PC, Singh AK, Ram P, Ingram KT, Singh BB, Singh RK. 1994. Carbohydrate Status of Rainfed Lowland Rices in Relation to Submergence, Drought and Shade Tolerance. In Lucknow, VP. pp. 104122. Physiology of Stress Tolerance in Rice. India-IRRI Philippines.
Cawoy V, Ledent JF, Kinet JM, Jacquemart AL. 2009. Floral Biology of Common Buckwheat (Fagopyrum esculentum Moench).
Dixon, R A, and Paiva NL. 1995. Stress-induced Fenylpropanoid Metabolism Plant Cell (7): p1085.
Geiger R. 1959. The Climate Near The Ground. Harvard University Press. Cambridge, Massachusetts.
Goldberg I. 1994. Functional Foods. Chapman & Hall. New York
Gupta N, Sharma SK, Rana JC, Chauhan RS. 2011. Expression of Flavonoid Biosynthesis Genes vis-à-vis Rutin Content Variation in Different Growth Stages of Fagopyrum species. Journal of Plant Physiology 168:21172123.
Hara T, Matsui K, Ikoma H, Tetsuka T. 2009. Cultivar Difference in Grain Yield and Preharvest Sprouting in Buckwheat (Fagopyrum esculentum Moench). Natl.Agr.Res.Cent.for Kyushu Okinawa Reg.,Koshi 8611192, Japan
Holton T.A & Cornish EC. 1995. Genetic and Biochemistry of Anthocyanin Biosynthesis. Journal The Plan Cell. Vol.7, 10711083 Jiang P, Burczynski F, Campbell C, Pierce G, Austria
JA, Briggs CJ. 2007. Rutin and Flavonoid Contents in There Buckwheat Species Fagopyrum esculetum, F. tataricum and F. homotropicum and Their Protection Affects Against Lipid Peroxidation. Food Research International 40:356-364.
Khumaida N. 2002. Studies on Adaptability of Soybean and Upland Rice to Shade Stress. [Disertasi] The University of Tokyo.
Kalinova J & Dadakova E. 2006 Varietal and Year Changes of Rutin Content in Common Buckwheat (Fagopyrum esculentum Moench).
Cereal Research Communications 34: 3151321.
Kalinova J. & Vrchotova N. 2011. The Influence of Organic and Conventional Crop Management, Variety and Year on The Yield and Flavonoid Level in Common Buckwheat Groats. Journal of
Food Chemistry. Vol. 127, no. 2, 2011, pp 602-608. Doi 10.1016/j.foodchem
Kreft S, Strukej B, Gaberscik A, & Kreft I. 2002. Rutin in Buckwheat Herbs Grown at Different UV-B Radiation Levels: Comparison of Two UV Spectrophotometric and HPLC Method. Journal of Experimental Botany 53:18011804.
Kuntic V, Filipovic I, Vujic Z. 2011. Effects of Rutin and Hesperidin and Their Al (III) and Cu (II) Complexes on In Vitro Plasma Coagulation Assays. Molecules 16(2):1378-88.
Levitt J. 1980. Responses of Plant to Enviromental Stresses. Vol. II. Water Radiation, Salt and Other Stresses. Academic Pr. New York.
Li L, Hongyue M, Nianyun Y, Yuping T, Jianming G, Weiwei T, Jin’ao A. 2010. Series of Natural Flavonoids as Thrombin Inhibitors: Structure
Relationships. Journal Thrombosis Research. 126:365-378.
Monteith JL. 1973. Principle of Enviromental Physics. Edward Arnold. London.
Pushpakumari R, Sasidhar VK. 1996. Dry Matter Production and Uptake of Nutrients by Yam and Arvids as Influenced by Shade Intensities. Tropical tuber Crops Science.
Rahman ARZNR, Zakaria II, Saleh AB, Basri M. 2012. Enzymatic Properties and Mutational Studies of Chalcone Synthase from Physcomitrella patens. Int. J. Mol.Sci. 9673-9691 doi:10.3390.
Sugimoto H, Koesmaryono Y. 2001. Photosynthesis of Buckwheat Population Under Field Conditions with Special Reference to Planting Density. Environ. Control in Biol. 39(3) 175182.
Stoskopf NC. 1981. Understanding Crop Production. Reston Publishing Company Inc Reston Virginia. (Fagopyrum esculentum) and Selected Buckwheat Products. Journal of Microbiology, Biotechnology and Food Sciences 1(10111019) Verhoeyen M.E, Bovi A, Collins G, Muir S, Robinson S, De Vos C. H. R, Colliver S. 2002. Increasing Antioxidant Levels in Tomatoes Through Modification of the Flavonoid Biosynthetic Pathway. Journal of experimental botanamany Vol.53, no 377. Doi:10.1093/jxb/erf026
Vojtiskova P, Kmentova K, Kuban V, Kracmar S. 2012. Chemical Composition of Buckwheat Plant.
Zhao D, Oosterhuis D. 1998. Cotton Responses to Shade at Different Growth Stages : Nonstructural Carbohydrate Composition. Crop
Sci.38:11961203