Kecambah Beras Pecah Kulit : Proses Produksi dan Karakteristiknya

Main Article Content

Hadi Munarko
Azis Boing Sitanggang
Feri Kusnandar
Slamet Budijanto

Abstract

Proses perkecambahan diketahui mampu memperbaiki mutu organolaptik dan juga meningkatkan beberapa senyawa tertentu pada beras pecah kulit. Artikel ini bertujuan untuk mengulas teknologi proses perkecambahan beras pecah kulit dan membahas perubahan yang terjadi selama perkecambahan. Beras pecah kulit berkecambah merupakan beras pecah kulit yang telah mengalami perendaman dan perkecambahan pada kondisi tertentu. Perkecambahan mampu meningkatkan kandungan senyawa bioaktif beras pecah kulit, salah satunya adalah senyawa γ-aminobutyric acid (GABA). GABA berfungsi sebagai penghambat neurotransmitter di otak yang bermanfaat untuk manajemen stres. Kondisi perendaman yang sesuai terkait dengan suhu, waktu, pH, maupun penambahan senyawa seperti asam glutamat dapat mengoptimalkan peningkatan kandungan GABA pada beras pecah kulit berkecambah. Selama proses perkecambahan terjadi perubahan-perubahan biokimia yang diakibatkan oleh aktivitas enzim endogenus yang mengubah komponen makromolekul menjadi komponen yang lebih sederhana. Perkecambahan pada kondisi tertentu juga dapat mengakibatkan perubahan fisikokimia pada beras pecah kulitberkecambah, diantaranya perubahan komposisi kimia, tekstur, dan profil gelatinisasi. Selain itu, perkecambahan mampu meningkatkan karakteristik organoleptik beras pecah kulit berkecambah yang telah dimasak khususnya pada atribut rasa dan tekstur.

Article Details

Section
Articles
Author Biographies

Hadi Munarko, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian

Azis Boing Sitanggang, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor

Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Institut Pertanian Bogor

Feri Kusnandar, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor

Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Institut Pertanian Bogor

Slamet Budijanto, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor

Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Institut Pertanian Bogor

References

Abubakar B, Yakasai HM, Zawawi N, Ismail M. 2017. Compositional analyses of white, brown and germinated forms of popular Malaysian rice to offer insight into the growing diet-related diseases. J. Food Drug Anal.:1–10. doi:10.1016/j.jfda.2017.06.010.

Astawan M, Febrinda A E. 2010. Potensi Dedak dan Bekatul Beras sebagai Ingredient Pangan dan Produk Pangan Fungsional. J. Pangan. 19 (1): 14-21.

Banchuen J. 2010. Bio-active Compounds in Germinated Brown Rice and Its Applica-tion. PhD Thesis at Prince of Songkla University.

Bewley JD. 1997. Seed Germination and Dor-mancy. Plant Cell 9:1055–1066. doi:10. 1093/jxb/erw028.

Boonstra E, Kleijn RD, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis. 2015. Neurotransmitters as food supplements: the effects of GABA on brain behavior. Frontiers in Psychology 6 (1520): 1-6.

Byun JI, Shin YY, Chung SE, Shin WC. 2018. Safety and efficacy of Gamma-Amino-butyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial. J Clin Neurol 14(3): 291-295.

[BPS] Badan Pusat Statistika. 2017a. Produksi padi menurut provinsi (ton), 1993-2015. https://www.bps.go.id/linkTableDinamis /view/id/865 (diakses 07 Des 2018).

[BPS] Badan Pusat Statistika. 2017b. Rata-rata konsumsi per kapita seminggu beberapa macam bahan makanan penting 2007-2016. https://www.bps.go.id/linkTabelStatis/view/id/950 (diakses pada 06 Des 2018).

Cáceres PJ, Martínez-Villaluenga C, Amigo L, Frias J. 2014. Maximising the phytoche-mical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 152:407–414. doi:10.1016/j. foodchem.2013.11.156.

Cáceres PJ, Peñas E, Martinez-Villaluenga C, Amigo L, Frias J. 2017. Enhancement of biologically active compounds in germi-nated brown rice and the effect of sun-drying. J. Cereal Sci. 73:1–9. doi:10.1016/ j.jcs.2016.11.001.

Charoenthaikij, P., Jangchud, A., Piyachomkwan, K., Tungtrakul, P., Prinyawiwatkul W. 2009. Germination conditions affect physi-cochemical properties of Germinated Brown Rice flour. J. Food Sci. 74: 658-665.

Chen HH, Chang HC, Chen YK, Hung CL, Lin SY, Chen YS. 2016. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chem. 191:120–127. doi:10.1016/j.foodchem.2015.01.083.

Cho DH, Lim ST. 2016. Germinated brown rice and its bio-functional compounds. Food Chem. 196:259–271. doi:10.1016/j. foodchem.2015.09.025.

Dinesh Babu P, Subhasree RS, Bhakyaraj R, Vidhyalakshmi R. 2009. Brown Rice-Beyond the Color Reviving a Lost Health Food -A Review. Am. J. Agron. 2:67–72.

Gong ES, Luo SJ, Liu CM, Zhang GW, Chen J, Zeng ZC, Liu RH. 2017. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 227: 432-443.

Guo W, Beta T. 2013. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Research Int. 51(2): 518-525.

Han A, Jinn JR, Mauromoustakos A, Wang YJ. 2016. Effect of parboiling on milling, physicochemical, and textural properties of medium- and long-grain germinated brown rice. Cereal Chem. 93:47–52. doi:10.1094/ CCHEM-01-15-0013-R.

Huang J, Mei LH, Wu H. 2007. Biosynthesis of gamma-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J. Microbial Biotechnology. 23:865-871.

Indriarsih S, Astuti M, Kanoni S, Rahayu ES. 2017. Fatty Acid Composition and Physi-cochemical Properties in Germinated Black Rice. Indones. Food Nutr. Prog. 14:29–36.

Ito S, Ishikawa Y. 2004. Marketing of Value-Added Rice Products in Japan: Germi-nated Brown Rice and Rice Bread. FFAO Int. Rice Year, 2004 Symp.:1–10.

Jiamyangyuen S, Ooraikul B. 2007. The physico-chemical, eating and sensorial properties of germinated brown rice. J of Food Agr and Env 6(2):119-124.

Kaosa-ard T, Songsermpong S. 2012. Influence of germination time on the GABA content and physical properties of germinated brown rice. Asian J. Food Agro-Industry 5:270–283.

Komatsuzaki N, Tsukahara K, Toyoshima H, Suzuki T, Shimizu N, Kimura T. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 78:556–560. doi:10. 1016/j.jfoodeng.2005.10.036.

Liu R, He X, Shi J, Nirasawa S, Tatsumi E, Li L, Liu H. 2013. The effect of electrolyzed water on decontamination, germination and ɣ-aminobutyric acid accumulation of brown rice. Food Control 33: 1-5.

Maisont S, Narkrugsa W. 2010. The effect of germination on GABA content, chemical composition, total phenolics content and antioxidant capacity of Thai waxy paddy rice. Kasetsart J. - Nat. Sci. 44:912–923.

Mohan B., Malleshi NG, Koseki T. 2010. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. LWT - Food Sci. Technol. 43:784–791. doi:10.1016/j.lwt.2010.01.002.

Mohd. Esa N, Kadir KA, Amom Z, Azlan A. 2013. Antioxidant activity of white rice , brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chem. 141:1306–1312. doi:10.1016/j.foodchem.2013.03.086.

Musa ASN, Umar IM, Ismail M. 2011. Physico-chemical properties of germinated brown rice ( Oryza sativa L .) starch. African J. Biotechnol. 10:6281–6291. doi:10.5897/ AJB10.2639.

Ohtsubo K, Suzuki K, Yasui Y, Kasumi T. 2005. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal. 18:303–316. doi:10.1016/.jfca.2004. 10.003.

Okarter N, Liu CS, Sorrells ME, Liu RH. 2010. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 119(1): 249-257.

Pa VV, Sundharam K A, Praveen V. 2013. Brown Rice -Hidden Nutrients. J. Biosci. Technol. 4:503–507.

Patil SB, Khan K. 2011. Germinated brown rice as a value added rice product : A review. J. Food Sci. Technol. 48 (6):661–667. doi:10.1007/s13197-011-0232-4.

Pinkaew H, Wang YJ, Naivikul O. 2017. Impact of pre-germination on amylopectin mole-cular structures, crystallinity, and thermal properties of pre-germinated brown rice starches. J. Cereal Sci. 73:151–157. doi:10.1016/j.jcs.2016.12.013.

[Pusdatin Pertanian] Pusat Data dan Sistem Informasi Pertanian. 2014. Beras . Buletin Konsumsi Pangan. 5(1): 9-20.

Ravichanthiran K, Ma ZF, Zhang H, Cao Y, Wang CW, Muhammad S, Aglago EK, Zhang Y, Jin Y, Pan B. 2018. Phyto-chemical Profile of Brown Rice and Its Nutrigenomic Implications. Antioxidants 7(6):71-86. doi:10.3390/antiox7060071.

Sirisoontaralak P, Nakornpanom NN, Koakiet-dumrongkul K, Panumaswiwath C. 2014. Development of quick cooking germinated brown rice with convenient preparation and containing health benefits. LWT-Food Science and Technology.61: 138-144.

Srisang N, Prachayawarakorn S, Varanyanond W, Soponronnarit S. 2011. Germinated brown rice drying by hot air fluidization technique. Dry. Technol. 29:55–63. doi: 10.1080/07373937.2010.482691.

Srisang N, Varanyanond W, Soponronnarit S, Prachayawarakorn S. 2011. Effects of heating media and operating conditions on drying kinetics and quality of germinated brown rice. J. Food Eng. 107:385–392. doi:10.1016/j.jfoodeng.2011.06.030.

Su YC, Wang JJ, Lin TT. 2003. Production of secondary metabolites gamma-amino-butyric acid and monacolin K by monas-cus. J. Ind. Microbiol. Biotechnology. 30: 41-46.

Sunte J, Srijesdaruk V, Tangwongchai R. 2007. Effects of Soaking and Germinating Process on Gamma-Aminobutyric Acid (GABA) Content in Germinated Brown Rice (Hom mali 105). Agric. Sci. J. 38:103–106.

Suzuki K, Maekawa T. 2000. Induction of homogeneous rooting control in liquid cultured brown rice using hypoxic condi-tions. Seed Sci. Technoogy 28:367–379.

Thomas R, Bhat R, YT K. 2015. Composition of amino Acids , fatty acids , minerals and dietary fiber in some of the local and import rice varieties of Malaysia. IFRJ 22:1148–1155.

Tortayeva DD, Hettiarachchy N, Horax R, Eswaranandam S, Jha A. 2014. Effects of germination on nutrient composition of long grain rice and its protein physico-chemical and functional properties. J. Food Nutr. 1:1–9.

Watanabe M, Maeda T, Tsukahara K, Kayahara H, Morita N. 2004. Application of pregerminated brown rice for bread-making. Cereal Chem. 81:450–455. doi: 10.1094/CCHEM.2004.81.4.450.

Watchararparpaiboon W, Laohakunjit N, Kerd-choechuen O. 2010. An improved process for high quality and nutrition of brown rice production. Food Sci. Technol. Int. 16:147–158. doi:10.1177/ 1082013209353 220.

Wichamanee Y, Teerarat I. 2012. Production of germinated red jasmine brown rice and its physicochemical properties. Int. Food Res. J. 19:1649–1654.

Zhang Q, Xiang J, Zhang L, Zhu X, Evers J, van der Werf W, Duan L. 2014. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Foods 10:283–291. doi:10. 1016/j.jff.2014.06.009.